How many symbols for k-Thue sequences?

Martina Mockovčiaková

A sequence is called nonrepetitive or Thue if it does not contain a repetition of any length. Currie and Simpson introduced a generalization of this notion. A sequence S is k-Thue if every j-subsequence of S is Thue, for $1 \leq j \leq k$. Here, a j-subsequence of S is a subsequence $\xi_{i} \xi_{i+j} \xi_{i+2 j} \ldots$, for any i.
In 2002 Grytczuk conjectured that $k+2$ symbols are enough to construct a k Thue sequence of arbitrary length and it was shown that the conjecture is true for $k=2,3$ and 5 .
We present a construction of arbitrarily long k-Thue sequences on $2 k$ symbols, which improves the previous bound of $2 k+10 \sqrt{k}$. Moreover, we confirm the conjecture for the cases $k=4$ and 6 in two ways and present constructions of both cases using 6 and 8 symbols, respectively.

